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The theoretical advances in the properties of scoring rules over the past decades have
broadened the use of scoring rules in probabilistic forecasting. In meteorological fore-
casting, statistical postprocessing techniques are essential to improve the forecasts made
by deterministic physical models. Numerous state-of-the-art statistical postprocessing
techniques are based on distributional regression evaluated with the continuous ranked
probability score (CRPS). However, the theoretical properties of such evaluations with
the CRPS have solely considered the unconditional framework (i.e. without covariates)
and infinite sample sizes. We extend these results and study the rate of convergence in
terms of the CRPS of distributional regression methods. We find the optimal minimax
rate of convergence for a given class of distributions and show that the k-nearest
neighbor method and the kernel method reach this optimal minimax rate.

© 2022 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In meteorology, ensemble forecasts are based on a
iven number of deterministic models whose parameters
ary slightly in order to consider observation errors and
ncomplete physical representations of the atmosphere.
his leads to an ensemble of different forecasts that also
ssess the overall uncertainty of the forecast. Ensemble
orecasts suffer from bias and underdispersion (Hamill
Colucci, 1997; Baran & Lerch, 2018) and need to be

tatistically postprocessed in order to be improved. Differ-
nt postprocessing methods have been proposed, such as
nsemble model output statistics (Gneiting et al., 2005),
uantile regression forests (Taillardat et al., 2016), and
eural networks (Schulz & Lerch, 2022). These references,
mong others, also discuss the stakes of weather forecast
tatistical postprocessing.
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0169-2070/© 2022 The Authors. Published by Elsevier B.V. on behalf of Inter
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Postprocessing methods rely on distributional regres-
sion (Gneiting & Katzfuss, 2014) where the aim is to
predict the conditional distribution of the quantity of
interest (e.g. temperature, wind speed, or precipitation)
given a set of covariates (e.g. raw outputs of a physi-
cal ensemble model). Algorithms are often based on the
minimization of a proper scoring rule that compares ac-
tual observations with the predictive distribution. Scoring
rules can be seen as the equivalent to loss functions in
classical regression. A detailed review of scoring rules
is given by Gneiting and Raftery (2007). The continu-
ous ranked probability score (CRPS; Matheson & Winkler,
1976), defined in Eq. (2), is one of the most popular
scores in meteorological forecasting. The CRPS is also
minimized to infer the parameters of statistical models
used in postprocessing (e.g. Gneiting et al., 2005; Naveau
et al., 2016; Rasp & Lerch, 2018; Taillardat et al., 2019).
Recently, under monotonicity assumptions, the isotonic
distributional regression (Henzi et al., 2021) was shown
to minimize the in-sample CRPS and to satisfy consistency
in the sense of the Kolmogorov distance.
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To the best of our knowledge, most convergence state-
ents in distributional regression (e.g. Thorey et al., 2017
nd Mösching & Dümbgen, 2020) are not only derived
ithin an unconditional framework, i.e. without taking

nto account the covariates, but also these limiting results
ssume arbitrarily large sample sizes. In this work, our
oal is to bypass these two limitations.
This paper is organized as follows. Section 2 introduces

reliminary notions that are needed to state our main
esults in Section 3. Section 2.1 introduces our framework
nd notation for distributional regression. Section 2.2
rovides the theoretical background on distributional re-
ression and its evaluation using the CRPS, and Sec-
ion 2.3 provides some elements on minimax risk theory.
ection 2.4 briefly introduces the two models studied
ere: the k-nearest neighbor and kernel estimators. The
ain results on the minimax rate of convergence for
istributional regression are stated in Section 3.1 where
uitable classes of distributions D(h,C,M) are defined. In
ection 3.2, we study the k-NN estimators and derive a
on-asymptotic upper bound for the excess risk of the
RPS uniformly on the class D(h,C,M). Section 3.3 provides
imilar results for the kernel method. In Section 3.4, we
ind a lower minimax rate of convergence by reducing
he problem to standard point regression solved by Györfi
t al. (2002). We can deduce that the k-NN method for
he distributional regression reaches the optimal rate
f convergence in dimension d ≥ 2, while the kernel

method reaches the optimal rate of convergence in any
dimension. All the proofs are postponed to and detailed in
the Appendix. Section 4 provides a short conclusion and
discussion.

2. Preliminaries

2.1. Distributional regression framework

We consider the regression framework (X, Y ) ∈ Rd
×R

with distribution P . The goal of distributional regression is
to estimate the conditional distribution of Y given X = x,
noted

F∗

x (y) : = P(Y ≤ y|X = x), x ∈ Rd.

In forecast assessment, we make the distinction be-
tween the construction of the estimator relying on the
training sample Dn = {(Xi, Yi), 1 ≤ i ≤ n} and its
evaluation with respect to new data (X, Y ). Given the
training sample Dn, the forecaster constructs a predictor
F̂n : x ↦→ F̂n,x that estimates the conditional distribution
F∗
x . In this context, it is crucial to assess whether F̂n,x is
close to F∗

x over the entire range of possible values of
X = x. To this aim, we consider

EX∼PX ,Dn∼Pn

[∫
R

|F̂n,X (z) − F∗

X (z)|
2
dz
]

(1)

where PX denotes the marginal distribution of X , and
EX∼PX ,Dn∼Pn denotes the expectation with respect to X
and Dn following PX and Pn, respectively. The squared L2-
norm within the expectation is usually referred to as the
squared second-order Cramér’s distance. We focus on this
specific distance because it corresponds to the excess risk
associated with the CRPS, also called the divergence of the
CRPS, as explained in the next section.
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2.2. CRPS and evaluation of distributional regression

The continuous ranked probability score (CRPS; Math-
eson & Winkler, 1976) compares a predictive distribu-
tion F and a real-valued observation y by computing the
following integral:

CRPS(F , y) =

∫
R
(F (z) − 1y≤z)2dz. (2)

The expected CRPS of a predictive distribution F when
observations Y are distributed according to G is defined
as

CRPS(F ,G) =

∫
R
CRPS(F , y)G(dy), F ,G ∈ M(R), (3)

where M(R) denotes the set of all distribution functions
on R. This quantity is finite when both F and G have
a finite first moment. Then the difference between the
expected CRPS of forecast F and the expected CRPS of the
ideal forecast G can be written as

CRPS(F ,G) − CRPS(G,G) =

∫
R

|F (z) − G(z)|2dz ≥ 0. (4)

This implies that the only optimal prediction, in the sense
that it minimizes the expected CRPS, is the true distri-
bution G. A score with this property is said to be strictly
proper. This property is essential for distributional regres-
sion, as it justifies the minimization of the expected score
in order to construct or evaluate a prediction.

In distributional regression, the quality of a predictor
ˆ : x ↦→ F̂x is assessed by its risk:

P (F̂ ) = E(X,Y )∼P

[
CRPS(F̂X , Y )

]
= EX∼PX

[
CRPS(F̂X , F∗

X )
]
.

This quantity is important, as many distributional regres-
sion methods try to minimize it in order to improve
predictions. When Y is integrable, Eq. (4) implies

RP (F̂ ) − RP (F∗) = E(X,Y )∼P

[
CRPS(F̂X , Y ) − CRPS(F∗

X , Y )
]

= EX∼PX

[∫
R

⏐⏐⏐F̂X (z) − F∗

X (z)
⏐⏐⏐2 dz] ≥ 0. (5)

We recall that the Bayes risk is the minimal theoretical
risk over all possible predictors and that a Bayes predic-
tor is a predictor achieving the Bayes risk. Thus, Eq. (5)
implies that RP (F∗) is the Bayes risk and that F∗ is a Bayes
predictor if and only if F̂x = F∗

x PX -a.e. An introduction to
the notions of theoretical risk, Bayes risk, and excess risk
can be found in Section 2.4 of Hastie et al. (2009).

Finally, we consider the case of a predictor F̂n built on
a training sample Dn = {(Xi, Yi), 1 ≤ i ≤ n}, as presented
n Section 2.1, to estimate the conditional distribution
f Y given X . Then (X, Y ) denotes a new independent
bservation used to evaluate the performances of F̂n. The
redictor has the expected CRPS

Dn∼Pn [RP (F̂n)] = EDn∼Pn,(X,Y )∼P [CRPS(F̂n,X , Y )],

with expectation taken both with respect to the training
sample D and test observation (X, Y ). Once again, when
n
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Y is integrable, the theoretical risk has a unique minimum
given by RP (F∗). The excess risk becomes

EDn∼Pn

[
RP (F̂n)

]
− RP (F∗)

= EDn∼Pn,X∼PX

[∫
R

⏐⏐⏐F̂n,X (z) − F∗

X (z)
⏐⏐⏐2 dz] ≥ 0. (6)

his justifies the choice of the squared Cramér’s distance
n Eq. (1).

For large sample sizes, one expects that the predictor
orrectly estimates the conditional distribution and that
he excess risk (6) tends to zero. A genuine question is to
nvestigate the rate of convergence of the excess risk to
ero as the sample size n → ∞. The risk depends on the
istribution of observations, and we want the model to
erform well on large classes of distributions. Hence, we
onsider the standard minimax approach, as described in
he next section.

.3. Optimal minimax rates of convergence

In order to study the rate of convergence, as n → ∞,
f the excess risk (6) to zero, we introduce the notion of
he optimal minimax rate of convergence. The minimax risk
orresponds to the best achievable risk in the worst-case
cenario (whence the name minimax). More precisely,
iven a class of distributions D, the optimal minimax
ate of convergence quantifies the minimal error that an
stimator F̂n can achieve uniformly on a given class of
istributions D, when the size of the training set Dn gets

large.
Stone (1982) provided minimax rates of convergence

within a point regression framework and the minimax
theory for nonparametric regression is well-developed,
see e.g. Györfi et al. (2002) or Tsybakov (2009). To the
extent of our knowledge, this paper states the first results
for distributional regression.

The formal definition of the minimax rate of conver-
gence for distributional regression is as follows:

Definition 1. A sequence of positive numbers (an) is
called an optimal minimax rate of convergence on class
D if

lim inf
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)] − RP (F∗)
an

> 0 (7)

and

lim sup
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)] − RP (F∗)
an

< ∞, (8)

where the infimum is taken over all distributional regres-
sion models F̂n trained on Dn. If the sequence (an) satisfies
only the lower bound (7), it is called a lower minimax rate
of convergence.

2.4. k-NN and kernel predictors in distributional regression

Many predictors F̂n can be studied and possibly achieve
the optimal minimax rate of convergence. In this paper,
we focus on two simple cases: k-nearest neighbor and
kernel estimators.
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The k-nearest neighbor (k-NN) method is well known
in the classical framework of regression and classification
(see, e.g. Biau & Devroye, 2015). In distributional regres-
sion, the k-NN method can be suitably adapted to esti-
mate the conditional distribution F∗

x , and the estimator is
written as

F̂n,x(z) =
1
kn

kn∑
i=1

1Yi:n(x)≤z, (9)

here 1 ≤ kn ≤ n, and Yi:n(x) denotes the observation at
he ith nearest neighbor of x. As usual, possible ties are
roken at random to define nearest neighbors. Note that
n weather forecast statistical postprocessing, the k-NN
ethod corresponds to a type of analog ensemble method

see Delle Monache et al., 2013).
The kernel estimate in distributional regression (see,

.g., Chapter 5 of Györfi et al., 2002) can be expressed as

ˆn,x(z) =

∑n
i=1 K (

x−Xi
hn

)1Yi≤z∑n
i=1 K (

x−Xi
hn

)
, (10)

where function K : Rd
→ [0, ∞) is a density function,

called a kernel; and hn > 0 is the so-called bandwidth,
which depends on the sample size n. If the denomina-
tor in (10) vanishes, we use the convention F̂n,x(z) =
1
n

∑n
i=1 1Yi≤z .

Minimax rates of convergence of the k-NN and kernel
models in point regression are well studied, and it is
known that, for suitable choices of the number of neigh-
bors kn and bandwidth hn, respectively, the methods are
minimax-rate optimal on classes of distributions with
Lipschitz or, more generally, Hölder continuous regression
functions (see e.g., Theorem 14.5 in Biau & Devroye, 2015
and Theorem 5.2 in Györfi et al. (2002)). For suitable
classes of distributions defined hereafter, we are able to
extend these results to distributional regression. More-
over, we obtain non-asymptotic bounds for the minimax
rate of convergence for both the k-NN and kernel models
(see Sections 3.2 and 3.3).

3. Main results

3.1. Optimal minimax rate of convergence

We consider the following classes of distributions:

Definition 2. For h ∈ (0, 1], C > 0 and M > 0, let
D(h,C,M) be the class of distributions P such that F∗

x (y) =

P(Y ≤ y|X = x) satisfies

(i) X ∈ [0, 1]d PX -a.s.;
(ii) For all x ∈ [0, 1]d,

∫
R F∗

x (z)(1 − F∗
x (z))dz ≤ M;

(iii) ∥F∗

x′ − F∗
x ∥L2 ≤ C∥x′

− x∥h for all x, x′
∈ [0, 1]d.

Conditions (i)–(iii) in Definition 2 are very similar to
he conditions considered in the point regression frame-
ork; see Theorem 5.2 in Györfi et al. (2002). In con-
ition (i), [0, 1]d could be replaced by any compact set
f Rd. Condition (ii) requires that CRPS(F∗

x , F∗
x ) remains

uniformly bounded by M , which is a condition on the
dispersion of the distribution F∗, since it implies that the
X



R. Pic, C. Dombry, P. Naveau et al. International Journal of Forecasting 39 (2023) 1564–1572

f
d

o

T
m

b
f
b

w

a
e
t
e

F

w

mean absolute error (MAE) remains uniformly bounded.
Condition (iii) is a regularity statement of the conditional
distribution in the space L2(R). As an illustration, the dif-
erent conditions are expressed for the generalized Pareto
istribution model in Section 3.5 below.
Our main result is the following optimal minimax rate

f convergence:

heorem 1. The sequence an = n−
2h

2h+d is the optimal
inimax rate of convergence on the class D(h,C,M).

It should be stressed that the rate of convergence
n−

2h
2h+d is the same as in point regression with square

error, see Theorems 3.2 and 5.2 in Györfi et al. (2002) for
the lower bound and upper bound, respectively.

Remark 1. As pointed out by a referee, conditions (i) and
(iii) together with the integrability of Y imply condition
(ii) for someM > 0. However, the dispersion, as measured
y M , plays an important role throughout the proofs and,
or this reason, we keep condition (ii) in order to obtain
ounds as tight as possible.

The proof of Theorem 1 is divided into three steps:

1. We provide in Section 3.2 an explicit and non-
asymptotic upper bound for the excess risk of the k-
nearest neighbor model uniformly on class D(h,C,M).
The upper bound is then optimized with a suitable
choice of k = kn.

2. In Section 3.3, we obtain similar results for the
kernel model.

3. We show in Section 3.4 that an = n−
2h

2h+d is a lower
minimax rate of convergence. The main argument
is that it is enough to consider a binary model
when both the observation Y and prediction F̂X
take values in {0, L}. We deduce that in this case,
the CRPS coincides with the mean squared error so
that we can appeal to standard results on a lower
minimax rate of convergence for regression.

Combining these three steps, we finally obtain Theorem 1,
providing the optimal minimax rate of convergence of
the excess risk on the class D(h,C,M). All the proofs are
provided in the Appendix.

3.2. Upper bound for the k-nearest neighbor model

The k-NN method for distributional regression is de-
fined in Eq. (9). Here we do not use only the mean of
the nearest neighbor sample (Yi:n(x))1≤i≤kn , but rather its
entire empirical distribution. Interestingly, the tools de-
veloped to analyze the k-NN in point regression can be
used in our distributional regression framework.

Proposition 1. Assume P ∈ D(h,C,M) and let F̂n be the
k-nearest neighbor model defined by Eq. (9). Then,

EDn∼Pn [RP (F̂n)]−RP (F∗) ≤

{
8hC2

( kn
n

)h
+

M
kn

if d = 1,

cdhC2
( kn

n

)2h/d
+

M
kn

if d ≥ 2,

here cd =
23+

2
d (1+

√
d)2

V2/d
d

, and Vd is the volume of the unit

ball in Rd.
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Let us stress that the upper bound is non-asymptotic
and holds for all fixed n and kn. Optimizing the upper
bound in kn yields the following corollary:

Corollary 1. Assume P ∈ D(h,C,M) and consider the k-NN
model (9).

• For d = 1, the optimal choice kn =

(
M

hC28h

) 1
h+1

n
h

h+1

yields

EDn∼Pn [RP (F̂n)] − RP (F∗) ≤ Bn−
h

h+1

with constant B = C
2

h+1 M
h

h+1 8
h

h+1

(
h−

h
h+1 + h

1
h+1

)
.

• For d ≥ 2, the optimal choice kn =

(
Md

2hC2chd

) d
2h+d

n
2h

2h+d

yields

EDn∼Pn [RP (F̂n)] − RP (F∗) ≤ Bn−
2h

2h+d

with constant B = (C2chd )
d

2h+d M
2h

2h+d

(( d
2h

) 2h
2h+d +( 2h

d

) d
2h+d

)
.

3.3. Upper bound for the kernel model

Kernel methods adapted to distributional regression
are defined in Eq. (10). For convenience and simplicity of
notation, we develop our result for the simple uniform
kernel K (x) = 1{∥x∥≤1}. However, it should be stressed that
ll the results can be extended to boxed kernels (Györfi
t al., 2002, Figure 5.7, p. 73) to the price of some ex-
ra multiplicative constants. For the uniform kernel, the
stimator writes

ˆn,x(z) =

∑n
i=1 1{∥Xi−x∥≤hn}1{Yi≤z}∑n

i=1 1{∥Xi−x∥≤hn}

, (11)

when the denominator is non-zero, and F̂n(x) =
1
n

∑n
i=1 1{Yi≤z} otherwise.

Proposition 2. Assume P ∈ D(h,C,M) and let F̂n be the kernel
model defined by Eq. (11). Then,

EDn∼Pn [RP (F̂n)] − RP (F∗) ≤ c̃d
2M + C2dh +

M
n

nhd
n

+ C2h2h
n

here c̃d only depends on d.

Once again, the upper bound is non-asymptotic and
holds for all fixed n and hn. Optimizing the upper bound
in hn yields the following corollary:

Corollary 2. Assume P ∈ D(h,C,M) and consider the kernel
model (11). For any d, the optimal choice

hn =

(
c̃dd(2M + C2dh +

M
n )

2hC2

) 1
2h+d

n−
1

2h+d

yields

E n [R (F̂ )] − R (F∗) ≤ Bn−
2h

2h+d
Dn∼P P n P
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with

B = C
2d

2h+d

(
c̃d(2M + C2dh +

M
n
)
) 2h

2h+d

×

((
d
2h

)−
d

2h+d

+

(
d
2h

) 2h
2h+d

)
.

.4. Lower minimax rate of convergence

We finally compare the rates of convergence obtained
n Corollaries 1 and 2 with a lower minimax rate of
onvergence in order to see whether the optimal rate of
onvergence is achieved.
To prove a lower bound on a class D, it is always

ossible to consider a smaller class B. Indeed, if B ⊂ D,
e clearly have

inf
F̂n

sup
P∈B

{
EDn∼Pn [RP (F̂n)] − RP (F∗)

}
≤ inf

F̂n
sup
P∈D

{
EDn∼Pn [RP (F̂n)] − RP (F∗)

}
o that any lower minimax rate of convergence on B is
lso a lower minimax rate of convergence on D.
To establish the lower minimax rate of convergence,

e focus on the following classes of binary responses:

efinition 3. Let B(h,C,L) be the class of distributions of
X, Y ), such that

(i) Y ∈ {0, L} and X is uniformly distributed on [0, 1]d;
(ii) ∥F∗

x′ − F∗
x ∥L2 ≤ C∥x′

− x∥h for all x, x′
∈ [0, 1]d.

Since a binary outcome Y ∈ {0, L} satisfies
∫
R F∗

x (z)(1−

F∗
x (z))dz ≤ L/4, condition (ii) in Definition 2 holds with
M ≥ L/4. Then B(h,C,L)

⊂ D(h,C,M), and the following lower
bound established on the smaller class also holds on the
larger class.

Proposition 3. The sequence an = n−
2h

2h+d is a lower
inimax rate of convergence on the class B(h,C,L). More
recisely,

lim inf
n→∞

inf
F̂n

sup
P∈B(h,C,L)

EDn∼Pn [RP (F̂n)] − RP (F∗)

C
2d

2h+d n−
2h

2h+d
≥ C1 (12)

or some constant C1 > 0 independent of C.

Combining Corollaries 1 and 2 and Proposition 3, we
an deduce that for d ≥ 2, the k-NN model reaches the
ower minimax rate of convergence an = n−

2h
2h+d for the

lass D(h,C,M) and that the kernel model reaches the lower
inimax rate of convergence an in any dimension d. This
hows that this lower rate of convergence is in fact the
ptimal rate of convergence and proves Theorem 1.

.5. Generalized pareto distributions

Explicit parametric formulas of the CRPS exist for most
lassical distribution families: e.g. Gaussian, logistic, cen-
ored logistic, generalized extreme value, and generalized
areto (see Gneiting et al., 2005; Taillardat et al., 2016;
 d
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Friederichs & Thorarinsdottir, 2012). We focus here on
the generalized Pareto distribution (GPD) family and we
denote by Hξ,σ the GPD with shape parameter ξ ∈ R and
scale parameter σ > 0. Recall that it is defined, when
ξ ̸= 0, by

Hξ,σ (z) = 1 −

(
1 +

ξz
σ

)−1/ξ

+

, z > 0,

with the notation (·)+ = max(0, ·). When ξ = 0, the
standard limit by continuity is used. For ξ < 1, the GPD
has a finite first moment, and the associated CRPS is given
by the following (Friederichs & Thorarinsdottir, 2012):

CRPS
(
Hξ,σ , y

)
=

(
y +

σ

ξ

) (
2Hξ,σ (y) − 1

)
−

2σ
ξ (ξ − 1)

×

(
1

ξ − 2
+ (1 − Hξ,σ (y))

(
1 + ξ

y
σ

))
. (13)

When Y ∼ Hξ∗,σ∗ , the expected CRPS is as follows (Tail-
lardat et al., 2022):

CRPS
(
Hξ,σ ,Hξ∗,σ∗

)
=

σ ∗

1 − ξ ∗
+

2σ
1 − ξ

m0 +
2ξ

1 − ξ
m1

+ 2σ
(

1
1 − ξ

−
1

2(2 − ξ )

)
(14)

with

m0 = EY∼Hξ∗,σ∗

[(
1 +

ξ

σ
Y
)−1/ξ

]
,

m1 = EY∼Hξ∗,σ∗

[
Y
(
1 +

ξ

σ
Y
)−1/ξ

]
.

In particular,

CRPS
(
Hξ∗,σ∗ ,Hξ∗,σ∗

)
=

σ ∗

(2 − ξ ∗)(1 − ξ ∗)
.

We now consider the distributional regression frame-
work, and we illustrate the statement of Section 2.2 on
Bayes risk in the case of a generalized Pareto regression
model where Y given X = x follows a GPD with shape
parameter ξ ∗(x) and scale parameter σ ∗(x). Then it is
ossible to show that Bayes risk is equal to

P (F∗) =

∫
Rd

σ ∗(x)
(2 − ξ ∗(x))(1 − ξ ∗(x))

PX (dx)

hen 0 < ξ ∗(x) < 1 for all x ∈ Rd. For a forecast in the
GPD class, i.e. Fx is a GPD with shape parameter ξ (x) and
scale parameter σ (x), then the risk RP (F ) is equal to Bayes
isk if and only if ξ (x) = ξ ∗(x) and σ (x) = σ ∗(x) PX -a.e.

In the GPD regression framework, the conditions of
he classes of distributions D(h,C,M) can be interpreted as
conditions on the parameters ξ ∗(x) and σ ∗(x). Condition
(ii) is equivalent to σ ∗(x) ≤ M(2− ξ ∗(x))(1− ξ ∗(x)) when

< ξ ∗(x) < 1, for all x ∈ [0, 1]d. The regularity condition
iii) holds with constants C and h as soon as x ↦→ ξ ∗(x)
nd x ↦→ σ ∗(x) are both h-Hölder.
For example, the popular case where the shape param-

ter ξ ∗(x) and the scale parameter σ ∗(x) are assumed to
e linearly dependent on x (i.e. ξ ∗(x) = ξ0 + ξ1 · x and
∗(x) = σ0 + σ1 · x with ξ1, σ1 ∈ Rd) is in a class of
istributions of Definition 2.
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4. Conclusion and discussion

We found that the optimal rate of convergence for dis-
ributional regression on D(h,C,M) is of the same order as
he optimal rate of convergence for point regression. Thus,
ith regard to the sample size n, distributional regression
valuated with the CRPS converges at the same rate as
oint regression even though the distributional estimate
arries more information regarding the prediction of the
nderlying process.
We also showed that the k-NN method and the kernel

ethod reach this optimal rate of convergence, respec-
ively in dimension d ≥ 2 and in any dimension. However,
hese methods are not widely used in practice because of
he limitations of their predictive power in moderate or
igh dimension d ≥ 3 due to the curse of dimensionality.
n extension of this work could be to study whether
tate-of-the-art techniques reach the optimal rate of con-
ergence obtained in our study. Random forests (Breiman,
001) methods, such as quantile regression forests (Mein-
hausen, 2006) and distributional random forests (Ćevid
t al., 2020), appear to be natural candidates, as they are
ased on a generalized notion of neighborhood and have
een subject to recent development in weather forecast
tatistical postprocessing (see, e.g., Taillardat et al., 2016).
Our results were obtained for the CRPS, which is widely

sed in practice, but can easily be extended to the
eighted CRPS in its standard uses. The weighted CRPS

s defined as

CRPS(F , y) =

∫
R
(F (z) − 1y≤z)2w(z)dz

where w denotes the chosen weight. The weighted CRPS
is used to put the focus of the score on specific regions of
the outcome space (Gneiting & Ranjan, 2011). It is used in
the study of extreme events by giving more weight to the
extreme behavior of the distribution.

Moreover, an interesting development would be to
obtain similar results for the rate of convergence with re-
spect to different strictly proper scoring rules or metrics,
for instance energy scores or Wasserstein distances.
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Appendix A. Proof of Proposition 1

For simplicity of notation, we simply write E for the
expectation with respect to (X, Y ) ∼ P and Dn ∼ Pn.
The context makes it sufficiently clear so as to avoid
confusion.

Proof. Recall that for the CRPS, the excess risk is equal
to

E[RP (F̂n)] − RP (F∗) = E
[∫

R
|F̂n,X (z) − F∗

X (z)|
2
dz
]

. (A.1)

We first estimate E[|F̂n,x(z) − F∗
x (z)|

2
] for fixed x ∈ [0, 1]d

and z ∈ R. Denote by X1:n(x), . . . , Xkn:n(x) the nearest
neighbors of x, and by Y1:n(x), . . . , Ykn:n(x) the associated
values of the response variable. Conditionally on Xi:n(x) =

xi, 1 ≤ i ≤ kn, the random variables Yi:n(x), 1 ≤ i ≤ kn
are independent and with distribution F∗

xi , 1 ≤ i ≤ kn.
This implies that, conditionally, F̂n,x(z) is the average of
the kn independent random variables 1{Yi:n(x)≤z} that have
a Bernoulli distribution with parameter F∗

xi (z). Therefore,
the conditional bias and variance are given by

E[F̂n,x(z) − F∗

x (z) | Xi(x) = xi, 1 ≤ i ≤ kn]

=
1
kn

kn∑
i=1

(
F∗

xi (z) − F∗

x (z)
)

Var[F̂n,x(z) | Xi(x) = xi, 1 ≤ i ≤ kn]

=
1
k2n

kn∑
i=1

F∗

xi (z)(1 − F∗

xi (z)).

Adding up the squared conditional bias and variance, and
integrating with respect to Xi:n(x), 1 ≤ i ≤ kn, we obtain
the mean squared error:

E
[
|F̂n,x(z) − F∗

x (z)|
2]

= E
[( 1

kn

kn∑
i=1

(
F∗

Xi:n(x)(z) − F∗

x (z)
))2]

+
1
k2n

kn∑
i=1

E
[
F∗

Xi:n(x)(z)(1 − F∗

Xi:n(x)(z))
]
.

Using Jensen’s inequality and integrating with respect to
PX (dx)dz, we deduce that the excess risk (A.1) satisfies

E[RP (F̂n)] − RP (F∗)

≤
1
kn

kn∑
i=1

E
[∫

R
(F∗

Xi:n(X)(z) − F∗

X (z))
2dz
]

+
1
k2n

kn∑
i=1

E
[∫

R
F∗

Xi:n(X)(z)(1 − F∗

Xi:n(X))dz
]

.

Using conditions (ii) and (iii) in the definition of class
D(h,C,M) to bound from above the first and second terms,
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P
x

F
(

respectively, we get

E[RP (F̂n)] − RP (F∗) ≤
C2

kn

kn∑
i=1

E
[
∥Xi:n(X) − X∥

2h]
+

M
kn

≤ C2E
[
∥Xkn:n(X) − X∥

2h]
+

M
kn

,

here the last inequality uses the fact that, by definition
f nearest neighbors, the distances ∥Xi:n(X) − X∥, 1 ≤ i ≤

n, are non-increasing.
The last step of the proof is to use Theorem 2.4 from

iau and Devroye (2015) stating that

[∥Xkn:n(X) − X∥
2
] ≤

{
8 kn

n if d = 1,
cd
( kn

n

)2/d
if d ≥ 2.

ogether with the concavity inequality (as h ∈ (0, 1])

[∥Xkn:n(X) − X∥
2h

] ≤ E[∥Xkn:n(X) − X∥
2
]
h,

e deduce

[RP (F̂n)] − RP (F∗) ≤

⎧⎨⎩C28h
( kn

n

)h
+

M
kn

if d = 1,

C2cdh
( kn

n

)2h/d
+

M
kn

if d ≥ 2,

concluding the proof of Proposition 1. □

Appendix B. Proof of Proposition 2

Proof. Eq. (11) can be rewritten as

F̂n,x(z) =

∑n
i=1 1{Xi∈Sx,hn }1{Yi≤z}

nPn(Sx,hn )
,

with Sx,ϵ as the closed ball centered at x of radius ϵ > 0
and

Pn(·) =
1
n

n∑
i=1

1{Xi∈·}

as the empirical measure corresponding to X1, . . . , Xn.
Recall that we use the estimator F̂n(x) =

1
n

∑n
i=1 1{Yi≤z}

when nPn(Sx,hn ) = 0.
Similarly to the proof of Proposition 1, a bias/variance

decomposition of the squared error yields

E
[
|F̂n,x(z) − F∗

x (z)|
2]

= E

⎡⎣(∑n
i=1

(
F∗

Xi(x)(z) − F∗
x (z)

)
1{Xi∈Sx,hn }

nPn(Sx,hn )

)2

1{nPn(Sx,hn )>0}

⎤⎦
+ E

[∑n
i=1 F

∗

Xi (z)(1 − F∗

Xi (z))1{Xi∈Sx,hn }

(nPn(Sx,hn ))2
1{nPn(Sx,hn )>0}

]

+ E

⎡⎣(1
n

n∑
i=1

1{Yi≤z} − F∗

x (z)

)2

1{nPn(Sx,hn )=0}

⎤⎦
:= A (z) + A (z) + A (z).
1 2 3 d
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The excess risk at X = x is thus decomposed into three
terms

E
[∫

R
|F̂n,x(z) − F∗

x (z)|
2
dz
]

=

∫
R
A1(z)dz +

∫
R
A2(z)dz +

∫
R
A3(z)dz

that we analyze successively.
The first term (bias) is bounded from above using

Jensen’s inequality and property (iii) of D(h,C,M):∫
R
A1(z)dz ≤ E

[∑n
i=1

∫
R

(
F∗

Xi(x)
(z) − F∗

x (z)
)2dz1{Xi∈Sx,hn }

nPn(Sx,hn )

× 1{nPn(Sx,hn )>0}

]

≤ E

[∑n
i=1 C

2
∥Xi − x∥2h1{Xi∈Sx,hn }

nPn(Sx,hn )

× 1{nPn(Sx,hn )>0}

]
≤ C2hn

2h.

The second term (variance) is bounded using property
ii) of D(h,C,M) and an elementary result for the binomial
istribution:

R
A2(z)dz = E

[∑n
i=1

∫
R F∗

Xi
(z)(1 − F∗

Xi
(z))dz1{Xi∈Sx,hn }

(nPn(Sx,hn ))2

× 1{nPn(Sx,hn )>0}

]

≤ ME
[
1{nPn(Sx,hn )>0}

nPn(Sx,hn )

]
≤

2M
nPX (Sx,hn )

.

In the last line, we use that Z = nPn(Sx,hn ) follows a
binomial distribution with parameters n and p = PX (Sx,hn )
so that E

[ 1
Z 1{Z>0}

]
≤

2
(n+1)p ; see Lemma 4.1 in Györfi et al.

(2002).
The last term is a remainder term and is bounded by∫

R
A3(z)dz ≤ E

[
1
n

n∑
i=1

∫
R

(
F∗

Xi (z) − F∗

x (z)
)2 dz1{nPn(Sx,hn )=0}

]

+ E

[
1
n2

n∑
i=1

∫
R
F∗

Xi (z)(1 − F∗

Xi (z))dz1{nPn(Sx,hn )=0}

]
.

roperties (ii) and (iii) of D(h,C,M) and the fact that ∥Xi −

∥ ≤
√
d imply∫

R
A3(z)dz ≤

(
C2dh +

M
n

)
E
[
1{nPn(Sx,hn )=0}

]
≤

(
C2dh +

M
n

)
e−nPX (Sx,hn ).

or the second inequality, we use that P(Z = 0) =

1 − p)n ≤ e−np, where Z = nPn(Sx,hn ) follows a binomial
istribution with parameters n and p = P (S ).
X x,hn
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Collecting the three terms, we obtain the following
pper bound for the excess risk at X = x:

E
[∫

R
|F̂n,x(z) − F∗

x (z)|
2
dz
]

≤ C2hn
2h

+
2M

nPX (Sx,hn )
+

(
C2dh +

M
n

)
e−nPX (Sx,hn ).

We finally integrate this bound with respect to PX (dx).
According to Equation (5.1) in Györfi et al. (2002), there
exists a constant c̃d depending only on d such that∫

[0,1]d

1
nPX (Sx,hn )

PX (dx) ≤
c̃d
nhd

n
.

ote that c̃d can be chosen as c̃d = dd/2. We also have

[0,1]d
e−nPX (Sx,hn )PX (dx) ≤ max

u≥0
ue−u

∫
[0,1]d

1
nPX (Sx,hn )

× PX (dx)

≤
c̃d
nhd

n
.

We thus obtain

E[RP (F̂n)] − RP (F∗) = E
[∫

R
|F̂n,x(z) − F∗

x (z)|
2
dz
]

≤ C2hn
2h

+ c̃d
2M + C2dh +

M
n

nhn
d . □

Appendix C. Proof of Proposition 3

The proof of Proposition 3 relies on the next two
elementary lemmas. The first one states that for a binary
outcome Y ∈ {0, L}, forecasters should focus only on a
binary forecast F ∈ M({0, L}), which is very natural. More
precisely, any predictive distribution F ∈ M(R) can be
associated with F ∈ M({0, L}) with a better expected
CRPS.

Lemma 1. Let G ∈ M({0, L}). For F ∈ M(R), the
distribution

F̃ (z) = (1 − m)10≤z + m1L≤z with m =
1
L

∫ L

0
(1 − F (z))dz

atisfies

CRPS(F̃ ,G) ≤ CRPS(F ,G).

roof. Let F ∈ M(R) and G ∈ M({0, L}). We have

CRPS(F ,G) =

∫
R

∫
R
(F (z) − 1y≤z)2dzG(dy)

≥

∫
R

∫ L

0
(F (z) − 1y≤z)2dzG(dy)

ecause 1 − m is the mean value of F on [0, L], we have
or y ∈ {0, L}

L

0
(F (z) − 1y≤z)2dz ≥

∫ L

0
((1 − m) − 1y≤z)2dz.

ntegrating with respect to G(dy), we deduce

CRPS(F ,G) ≥

∫ ∫ L

((1 − m) − 1y≤z)2dzG(dy).

R 0
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The right-hand side equals CRPS(F̃ ,G) and we conclude

CRPS(F ,G) ≥ CRPS(F̃ ,G). □

Lemma 2 shows that for binary outcomes and predic-
tions, the CRPS reduces to a quantity proportional to the
Brier score: Brier, 1950

Brier(p, y) = (y − p)2, y ∈ {0, 1}, p ∈ [0, 1],

which is closely related to the mean squared error used
in regression.

Lemma 2. For all y ∈ {0, L} and F (z) = (1 − p)10≤z +

p1L≤z ∈ M({0, L}) with p ∈ [0, 1], it holds that

CRPS(F , y) = LBrier(p,
y
L
) = L(

y
L

− p)2.

roof. We compute

RPS(F , y) =

∫ L

0
(1 − p − 1y≤z)2dz

=

{
Lp2 if y=0
L(1 − p)2 if y=L .

n both cases, this equals L( yL − p)2 = LBrier(p, y
L ). □

Proof of Proposition 3. Since only binary outcomes are
considered in the class B(h,C,L), Lemma 1 implies that

inf
F̂n

sup
P∈B(h,C,L)

{
E[RP (F̂n)] − RP (F∗)

}
= inf

F̃n
sup

P∈B(h,C,L)

{
E[RP (F̃n)] − RP (F∗)

}
here the infima are taken over models F̂n and F̃n trained
n the first observations (Xi, Yi)1≤i≤n and with values in
(R) and M({0, L}), respectively. Indeed, the left-hand

ide is a priori smaller, since the family F̂n is larger, but
emma 1 ensures that each model F̂n can be associated
ith a model F̃n with equal or lower expected score.
We then apply Lemma 2. For a binary outcome, the

onditional distribution of Y given X = x writes
∗

x (z) = (1 − m(x))10≤z + m(x)1L≤z,

nd the model F̃n with values in M({0, L}) takes the form

˜n,x(z) = (1 − mn(x))10≤z + mn(x)1L≤z,

ith m(x) =
1
L

∫ L
0 (1 − F∗

x (z))dz and mn(x) =
1
L

∫ L
0 (1 −

ˆn,x(z))dz.
Then Lemma 2 implies

E[RP (F̂n)] − RP (F∗)

= E
[
CRPS(F̂n,X , Y ) − CRPS(F∗

X , Y )
]

= LE
[
(Y/L − mn(X))2 − (Y/L − m(X))2

]
= LE

[
(mn(X) − m(X))2

]
,

which corresponds to the excess risk in regression with
squared error loss. Property (iii) of B(h,C,L) is equivalent to

|m(x) − m(x′)|h ≤ C∥x − x′
∥
h, x ∈ [0, 1]d,
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which is the standard regularity assumption on the re-
gression function m. Using the result of Problem 3.3
in Györfi et al. (2002) dealing with binary models, we fi-
nally obtain that the sequence an = n−

2h
2h+d is a lower min-

imax rate of convergence for this class of distributions,
and more precisely that Eq. (12) holds. □
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